New Guess-and-Determine Attack on the Self-Shrinking Generator

نویسندگان

  • Bin Zhang
  • Dengguo Feng
چکیده

We propose a new type of guess-and-determine attack on the self-shrinking generator (SSG). The inherent flexibility of the new attack enables us to deal with different attack conditions and requirements smoothly. For the SSG with a length L LFSR of arbitrary form, our attack can reliably restore the initial state with time complexity O(2), memory complexity O(L) from O(2)-bit keystream for L ≥ 100 and time complexity O(2), memory complexity O(L) from O(2)-bit keystream for L < 100. Therefore, our attack is better than all the previously known attacks on the SSG and especially, it compares favorably with the time/memory/data tradeoff attack which typically has time complexity O(2), memory complexity O(2) and data complexity O(2)-bit keystream after a pre-computation phase of complexity O(2). It is well-known that one of the open research problems in stream ciphers specified by the European STORK (Strategic Roadmap for Crypto) project is to find an attack on the self-shrinking generator with complexity lower than that of a generic time/memory/data tradeoff attack. Our result is the best answer to this problem known so far.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guess-and-Determine Algebraic Attack on the Self-Shrinking Generator

In this paper we propose a new guess-and-determine attack on the self-shrinking generator (SSG), proposed by Meier and Staffelbach at Eurocrypt’94. The main idea of our attack consists in guessing some information about the internal bitstream of SSG, and expressing this information by a system of polynomial equations on the still unknown key bits. From a practical point of view, we show that us...

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

Security Analysis of the Generalized Self-shrinking Generator

In this paper, we analyze the generalized self-shrinking generator newly proposed in [8]. Some properties of this generator are described and an equivalent definition is derived, after which two attacks are developed to evaluate its security. The first attack is an improved clock-guessing attack using short keystream with the filter function (vector G) known. The complexity of this attack is O(...

متن کامل

On the Design and Analysis of Stream Ciphers

T thesis presents new cryptanalysis results for several different stream cipher constructions. In addition, it also presents two new stream ciphers, both based on the same design principle. The first attack is a general attack targeting a nonlinear combiner. A new class of weak feedback polynomials for linear feedback shift registers is identified. By taking samples corresponding to the linear ...

متن کامل

Reducing the Space Complexity of BDD-Based Attacks on Keystream Generators

The main application of stream ciphers is online-encryption of arbitrarily long data, for example when transmitting speech data between a Bluetooth headset and a mobile GSM phone or between the phone and a GSM base station. Many practically used and intensively discussed stream ciphers such as the E0 generator used in Bluetooth and the GSM cipher A5/1 consist of a small number of linear feedbac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006